November 24, 2011

VAR estimation and cumulative response to shocks for the Hasbrouck model with different specifications

The aim of this project is the estimation of a VAR process molded on the Hasbrouck model. In particular, the model considered has the following reduced form (RF) specification:



and the following structural form (SF) representation:



where yt = [ rt  xt ]’, and rt  represents returns from a stock and obtained as the log difference of the mid-quotes in two subsequent periods, i.e.



and xt = {1,-1}, depending on whether a transaction is initiated by the buyer or the seller, respectively (i.e. whether the realized price is above or below the mid-quote).

The data set includes trades and quotes from the ITCH feed for Amgen (AMGN) and from TAQ for John Deere (DE). The files containing this information are provided below:

The results discussed below are obtained by running the following Matlab code:



Note that the estimated coefficients refer to the matrix of coefficients generated by the product 


for the lags of the two variables rt and xt in the SF representation of the VAR model, whereas they refer to the entry A12 in the matrix of coefficients A for the contemporaneous effect of xt on rt again in the SF representation.

(a) Estimation of the Hasbrouck VAR:



Stock: AMGN

Equation: rt

R2

1.4050E-01

Variable
lag
coefficient
t-statistic
constant

1.4872E-06
2.3930E+00
r
1
-1.0112E-01
-1.4629E+01

2
3.4773E-03
-1.1039E+00

3
1.9697E-02
1.2987E+00

4
3.9301E-03
-6.4438E-01

5
3.9358E-02
4.1271E+00
x
0
-1.3247E-08
-2.7536E+01

1
3.9012E-08
3.0929E+01

2
2.6534E-08
6.7267E+00

3
1.5311E-08
2.8532E+00

4
3.7657E-09
-9.7301E-01

5
2.7018E-09
2.0719E-01

Equation: xt

R2

5.5220E-01

Variable
lag
coefficient
t-statistic
constant

-1.9380E-02
-3.3940E+00
r
1
-1.9325E+02
-2.8418E+00

2
-1.3483E+02
-1.9670E+00

3
-1.3676E+02
-1.9956E+00

4
-3.1328E+01
-4.5879E-01

5
7.7282E+01
1.2155E+00
x
1
6.1244E-01
7.0156E+01

2
7.6485E-02
7.2777E+00

3
5.9862E-02
5.6831E+00

4
2.8602E-02
2.7174E+00

5
3.7386E-02
4.1068E+00

Stock: DE

Equation: rt

R2

2.5751E-02

Variable
lag
coefficient
t-statistic
constant

3.1689E-06
1.0511E+01
r
1
-4.6338E-03
-7.8262E-01

2
8.6860E-03
1.4647E+00

3
8.7373E-03
1.4731E+00

4
2.2391E-02
3.7789E+00

5
5.5227E-03
9.3799E-01
x
0
4.8916E-06
8.9877E+00

1
3.5896E-06
5.7774E+00

2
1.4471E-06
2.3093E+00

3
1.0292E-07
1.6421E-01

4
-4.5744E-08
-7.3548E-02

5
-1.4585E-06
-2.6497E+00

Equation: xt

R2

6.9150E-01

Variable
lag
coefficient
t-statistic
constant

-2.4893E-02
-7.7720E+00
r
1
-2.2958E+03
-3.7301E+01

2
-7.0211E+02
-1.1156E+01

3
-2.8913E+02
-4.5852E+00

4
-1.7222E+02
-2.7334E+00

5
8.8098E+00
1.4070E-01
x
1
5.5359E-01
9.5800E+01

2
1.5162E-01
2.2951E+01

3
9.3421E-02
1.4062E+01

4
4.4952E-02
6.8013E+00

5
7.3822E-02
1.2645E+01


(b) Re-estimation of the VAR using signed volumes (xVt):



Stock: AMGN

Equation: rt

R2

3.9045E-02

Variable
lag
coefficient
t-statistic
constant

1.4872E-06
1.9603E+00
r
1
-1.0112E-01
-1.1902E+01

2
3.4773E-03
4.0721E-01

3
1.9697E-02
2.3098E+00

4
3.9301E-03
4.6273E-01

5
3.9358E-02
4.6970E+00
xV
0
-1.3247E-08
-4.4139E+00

1
3.9012E-08
1.2884E+01

2
2.6534E-08
8.6614E+00

3
1.5311E-08
4.9825E+00

4
3.7657E-09
1.2271E+00

5
2.7018E-09
8.8587E-01

Equation: xt

R2

1.2657E-01

Variable
lag
coefficient
t-statistic
constant

-1.1615E+01
-5.4069E+00
r
1
-3.4625E+04
-1.4378E+00

2
-1.9473E+04
-8.0455E-01

3
-3.2947E+04
-1.3631E+00

4
3.9506E+04
1.6412E+00

5
3.8296E+04
1.6125E+00
xV
1
1.4283E-01
1.6812E+01

2
1.4354E-01
1.6696E+01

3
1.2109E-01
1.4000E+01

4
9.4511E-02
1.0912E+01

5
6.2098E-02
7.1966E+00

Stock: DE

Equation: rt

R2

3.8311E-03

Variable
lag
coefficient
t-statistic
constant

7.9210E-07
2.7816E+00
r
1
5.0775E-03
8.7730E-01

2
1.0051E-02
1.7380E+00

3
7.5085E-03
1.2985E+00

4
2.1588E-02
3.7348E+00

5
5.4057E-03
9.3608E-01
xV
0
1.2569E-09
3.2170E+00

1
1.8315E-09
4.6824E+00

2
1.5372E-09
3.9278E+00

3
1.1583E-09
2.9587E+00

4
1.2367E-09
3.1589E+00

5
9.0419E-10
2.3111E+00

Equation: xt

R2

9.2510E-03

Variable
lag
coefficient
t-statistic
constant

-3.6456E+01
-8.6528E+00
r
1
-2.9853E+04
-3.4819E-01

2
-3.7331E+04
-4.3574E-01

3
-4.2116E+04
-4.9167E-01

4
2.3718E+04
2.7699E-01

5
1.4167E+05
1.6560E+00
xV
1
5.6051E-02
9.6884E+00

2
3.6705E-02
6.3351E+00

3
3.2688E-02
5.6393E+00

4
3.1312E-02
5.4016E+00

5
3.4526E-02
5.9605E+00


(c ) Re-estimation of the VAR one last time using inside depth (idt):



Stock: AMGN

Equation: rt

R2

5.3874E-02

Variable
lag
coefficient
t-statistic
constant

-3.7280E-07
-4.8430E-01
r
1
-9.8169E-02
-1.1035E+01

2
1.4969E-02
1.6748E+00

3
3.1517E-02
3.5299E+00

4
1.1959E-02
1.3455E+00

5
3.8592E-02
4.6378E+00
xV
0
-1.0346E-08
-3.4599E+00

1
4.2370E-08
1.4023E+01

2
2.7035E-08
8.7679E+00

3
1.3838E-08
4.4729E+00

4
1.9472E-09
6.3012E-01

5
9.0100E-10
2.9333E-01
id
1
5.4164E-07
6.1803E+00

2
2.7731E-07
2.4696E+00

3
-2.0101E-09
-1.7868E-02

4
-1.0524E-07
-9.3551E-01

5
-2.6622E-07
-3.0039E+00

Equation: xt

R2

1.3345E-01

Variable
lag
coefficient
t-statistic
constant

-8.1477E+00
-3.7218E+00
r
1
-1.2791E+04
-5.0533E-01

2
-3.0477E+04
-1.1985E+00

3
-7.7233E+04
-3.0411E+00

4
6.5406E+04
2.5868E+00

5
3.8298E+04
1.6177E+00
xV
1
1.3959E-01
1.6393E+01

2
1.3816E-01
1.5891E+01

3
1.1763E-01
1.3450E+01

4
1.0258E-01
1.1725E+01

5
5.7986E-02
6.6453E+00
id
1
-7.0185E-02
-2.8145E-01

2
-9.6914E-01
-3.0343E+00

3
-1.0054E+00
-3.1421E+00

4
2.0109E+00
6.2915E+00

5
-8.2450E-01
-3.2708E+00

Equation: idt

R2

7.9614E-01

Variable
lag
coefficient
t-statistic
constant

4.0629E-01
5.2063E+00
r
1
3.0637E+02
3.3953E-01

2
-3.6986E+02
-4.0802E-01

3
-1.6861E+03
-1.8624E+00

4
-3.4692E+03
-3.8490E+00

5
-1.6520E+03
-1.9575E+00
xV
1
3.1328E-03
1.0321E+01

2
1.3425E-04
4.3314E-01

3
-4.0323E-04
-1.2933E+00

4
-9.0015E-05
-2.8861E-01

5
3.4966E-04
1.1241E+00
id
1
7.7963E-01
8.7703E+01

2
5.8936E-02
5.1763E+00

3
-5.0136E-03
-4.3956E-01

4
-4.2211E-03
-3.7048E-01

5
9.6309E-02
1.0718E+01

Stock: DE

Equation: rt

R2

4.0524E-03

Variable
lag
coefficient
t-statistic
constant

8.1449E-07
2.8587E+00
r
1
4.9502E-03
8.5525E-01

2
9.9163E-03
1.7146E+00

3
7.4213E-03
1.2834E+00

4
2.1481E-02
3.7161E+00

5
5.3622E-03
9.2855E-01
xV
0
1.3139E-09
3.3366E+00

1
1.9066E-09
4.8369E+00

2
1.6040E-09
4.0666E+00

3
1.2605E-09
3.1951E+00

4
1.2906E-09
3.2913E+00

5
9.5463E-10
2.4362E+00
id
1
2.6491E-08
7.2184E-01

2
-1.0909E-08
-2.1662E-01

3
1.0118E-08
2.0092E-01

4
-3.3625E-08
-6.6768E-01

5
4.4848E-08
1.2182E+00

Equation: xt

R2

2.4651E-02

Variable
lag
coefficient
t-statistic
constant

-3.7961E+01
-9.0763E+00
r
1
-3.9029E+03
-4.5871E-02

2
-2.5239E+04
-2.9686E-01

3
-3.2797E+04
-3.8583E-01

4
3.3468E+04
3.9386E-01

5
1.3998E+05
1.6490E+00
xV
1
4.9589E-02
8.5686E+00

2
3.1439E-02
5.4250E+00

3
2.8598E-02
4.9330E+00

4
2.6752E-02
4.6428E+00

5
2.8875E-02
5.0151E+00
id
1
7.4783E+00
1.3907E+01

2
-8.9044E+00
-1.2057E+01

3
-6.0254E-01
-8.1396E-01

4
-1.4352E+00
-1.9387E+00

5
5.5825E-01
1.0316E+00

Equation: idt

R2

8.5838E-01

Variable
lag
coefficient
t-statistic
constant

-3.2536E-02
-7.2264E-01
r
1
8.0694E+01
8.8102E-02

2
9.2587E+01
1.0117E-01

3
-5.9768E+02
-6.5317E-01

4
4.2327E+02
4.6272E-01

5
-1.8022E+01
-1.9723E-02
xV
1
-1.9007E-04
-3.0509E+00

2
-1.4832E-04
-2.3776E+00

3
-1.3555E-04
-2.1721E+00

4
3.5928E-06
5.7921E-02

5
-6.4841E-05
-1.0461E+00
id
1
9.3718E-01
1.6190E+02

2
1.0236E-02
1.2875E+00

3
7.9848E-03
1.0020E+00

4
-2.6881E-02
-3.3733E+00

5
-1.0150E-02
-1.7423E+00


For each of the specifications, we compute and plot the cumulative impulse response


or

for the specifications with volume.

Figure 1 - VAR as in (a) - AMGN

Figure 2 - VAR as in (a) - DE

Figure 3 - VAR as in (b) - AMGN

Figure 4 - VAR as in (b) - DE

Figure 5 - VAR as in (c) - AMGN

Figure 6 - VAR as in (c) - DE